Phys 410 Fall 2014 Lecture #3 Summary 9 September, 2014

We discussed the motion of a charged particle in a uniform and uni-directional magnetic field \vec{B} , subject to the Lorentz force $\vec{F} = q\vec{v} \times \vec{B}$, where q is the charge of the particle. We took $\vec{B} = B\hat{z}$ and found that Newton's second law of motion reduces to three scalar equations: $m\dot{v}_x = qv_yB$, $m\dot{v}_y = -qv_xB$, and $m\dot{v}_z = 0$. The solution for the motion along the magnetic field direction is simple: $z(t) = z_0 + v_{z0}t$, which is uniform motion at constant velocity. We solved the x-y plane motion using the trick of mapping this two-dimensional problem into the complex plane. Define the complex variable $\eta \equiv v_x + iv_y$, where $i = \sqrt{-1}$. The velocity of the particle is now represented as a point in the complex η plane, and the solution for the velocity evolution with time is a trajectory in the complex η plane. The pair of coupled differential equations now reduces to a simple equation for the time evolution of η , namely $\dot{\eta} = -i\omega\eta$, and the Cyclotron frequency is defined as $\omega = qB/m$, for the charged particle of mass m.

The equation is solved as $\eta = \eta_0 e^{-i\omega t}$, where $\eta_0 = v_{x0} + iv_{y0} \equiv v_0 e^{i\delta}$. This equation represents uniform circular motion in the η -plane on a circle of radius v_0 starting at an angle δ and rotating clockwise with angular velocity ω . The initial velocities are related to v_0 and δ as $v_{x0} = v_0 \cos\delta$ and $v_{y0} = v_0 \sin\delta$, and $v_0 = \sqrt{v_{x0}^2 + v_{y0}^2}$, $\delta = \tan^{-1}(v_{y0}/v_{x0})$. The resulting description of the motion can be obtained by taking the real and imaginary parts of η as $v_x(t) = Re[\eta] = v_0 \cos(\delta - \omega t)$, and $v_y(t) = Im[\eta] = v_0 \sin(\delta - \omega t)$.

The trajectory of the particle in the xy-plane can be solved by a similar method. First define the complex variable $\xi \equiv x + iy$, and relate it to η through the time derivative: $\eta = \dot{\xi}$. Integrate this equation and apply the initial conditions for x and y to obtain $\xi(t) = r_0 e^{i(\phi_0 - \omega t)}$, where the initial positions are written as $x_0 + iy_0 = r_0 e^{i\phi_0}$. The particle motion is described by uniform circular motion around a circle of radius r_0 starting at angle ϕ_0 at angular velocity ω . The resulting motion is three dimensions is helical about the magnetic field (z) axis.

We considered several <u>applications</u> of these ideas to the <u>cyclotron</u>, the Calutron, and <u>Whistlers</u> in the magneto-sphere of the earth.

We recalled the definition of the total momentum \vec{P} of a many particle system as simply the sum over all the particles of the elementary momentum of each particle, $\vec{P} = \sum_{\alpha=1}^{N} \vec{p}_{\alpha} = \sum_{\alpha=1}^{N} m_{\alpha} \vec{v}_{\alpha}$. If the particles in the system interact with each other by means of forces that obey Newton's third law of motion, the change in total momentum is simply the result of a net external force: $\vec{P} = \vec{F}_{net}^{ext}$. This is a generalization of Newton's second law of motion to extended systems. An important consequence is that if the net external force is zero, then the total momentum of the many-particle system is conserved. This is true independent of the nature of the forces between the particles in the system, be they electromagnetic, nuclear, conservative or non-conservative (i.e. forces that convert mechanical energy in to 'heat').

As an example of momentum conservation of a many-particle system with nonconservative forces between the particles, we considered a rocket in free space, subject to zero net external force. It can begin to move by ejecting mass at a speed v_{ex} relative to the rocket. By conservation of momentum, the rocket gains an equal and opposite moment to that given to the ejected fuel. While describing the momentum of the rocket + exhaust from an inertial reference frame we found that $m\dot{v} = -v_{ex}\dot{m}$, where v is the speed of the rocket, m is its mass, and \dot{m} is the rate at which it is ejecting mass. The thrust force on the rocket is $-v_{ex}\dot{m}$. We also found an expression for the net change in velocity of the rocket as $v - v_0 = v_{ex} \ln \frac{m_0}{m}$, where m_0 is the initial mass and m is the final mass. In order to maximize the rocket velocity one should maximize the exhaust speed v_{ex} and the ratio $\frac{m_0}{m}$. The exhaust speed typically depends on the violent exothermic chemical reaction that takes place in the rocket motor, making space flight fairly dangerous.