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 We discussed the motion of a charged particle in a uniform and uni-directional magnetic 
field 𝐵�⃗ , subject to the Lorentz force𝐹⃗ = 𝑞𝑣⃗ × 𝐵�⃗ , where 𝑞 is the charge of the particle.  We took 
𝐵�⃗ = 𝐵𝑧̂ and found that Newton’s second law of motion reduces to three scalar equations: 
𝑚𝑣̇𝑥 = 𝑞𝑣𝑦𝐵, 𝑚𝑣̇𝑦 = −𝑞𝑣𝑥𝐵, and 𝑚𝑣̇𝑧 = 0.  The solution for the motion along the magnetic 
field direction is simple: 𝑧(𝑡) = 𝑧0 + 𝑣𝑧0𝑡, which is uniform motion at constant velocity.  We 
solved the x-y plane motion using the trick of mapping this two-dimensional problem into the 
complex plane.  Define the complex variable 𝜂 ≡ 𝑣𝑥 + 𝑖𝑣𝑦, where 𝑖 = √−1.  The velocity of the 
particle is now represented as a point in the complex 𝜂 plane, and the solution for the velocity 
evolution with time is a trajectory in the complex 𝜂 plane.  The pair of coupled differential 
equations now reduces to a simple equation for the time evolution of 𝜂, namely 𝜂̇ = −𝑖𝜔𝜂, and 
the Cyclotron frequency is defined as 𝜔 = 𝑞𝐵/𝑚, for the charged particle of mass 𝑚. 

 The equation is solved as 𝜂 = 𝜂0𝑒−𝑖𝜔𝑡, where 𝜂0 = 𝑣𝑥0 + 𝑖𝑣𝑦0 ≡ 𝑣0𝑒𝑖𝛿.  This equation 
represents uniform circular motion in the 𝜂-plane on a circle of radius 𝑣0 starting at an angle 𝛿 
and rotating clockwise with angular velocity 𝜔.  The initial velocities are related to 𝑣0 and 𝛿 as 

𝑣𝑥0 = 𝑣0𝑐𝑜𝑠𝛿 and 𝑣𝑦0 = 𝑣0𝑠𝑖𝑛𝛿, and 𝑣0 = �𝑣𝑥02 + 𝑣𝑦02 , 𝛿 = tan−1�𝑣𝑦0/𝑣𝑥0�.  The resulting 

description of the motion can be obtained by taking the real and imaginary parts of 𝜂 as 𝑣𝑥(𝑡) =
𝑅𝑒[𝜂] = 𝑣0cos (𝛿 − 𝜔𝑡), and 𝑣𝑦(𝑡) = 𝐼𝑚[𝜂] = 𝑣0sin (𝛿 − 𝜔𝑡). 

 The trajectory of the particle in the xy-plane can be solved by a similar method.  First 
define the complex variable 𝜉 ≡ 𝑥 + 𝑖𝑦, and relate it to 𝜂 through the time derivative: 𝜂 = 𝜉̇.  
Integrate this equation and apply the initial conditions for 𝑥 and 𝑦 to obtain 𝜉(𝑡) = 𝑟0𝑒𝑖(𝜙0−𝜔𝑡), 
where the initial positions are written as 𝑥0 + 𝑖𝑦0 = 𝑟0𝑒𝑖𝜙0 .  The particle motion is described by 
uniform circular motion around a circle of radius 𝑟0 starting at angle 𝜙0 at angular velocity 𝜔.  
The resulting motion is three dimensions is helical about the magnetic field (z) axis. 

 We considered several applications of these ideas to the cyclotron, the Calutron, and 
Whistlers in the magneto-sphere of the earth. 

 We recalled the definition of the total momentum 𝑃�⃗  of a many particle system as simply 
the sum over all the particles of the elementary momentum of each particle, 𝑃�⃗ = ∑ 𝑝𝛼𝑁

𝛼=1 =
∑ 𝑚𝛼  𝑣⃗𝛼𝑁
𝛼=1 .  If the particles in the system interact with each other by means of forces that obey 

Newton’s third law of motion, the change in total momentum is simply the result of a net 

http://www.physics.umd.edu/courses/Phys410/Anlage_Fall14/The%20Cyclotron%20and%20Calutron.pdf
http://webphysics.davidson.edu/physlet_resources/bu_semester2/c13_cyclotron.html
http://www-pw.physics.uiowa.edu/space-audio/sounds/EarthWhistlers/ewhist.html
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external force: 𝑃�⃗ ̇ = 𝐹⃗𝑛𝑒𝑡𝑒𝑥𝑡.  This is a generalization of Newton’s second law of motion to extended 
systems.  An important consequence is that if the net external force is zero, then the total 
momentum of the many-particle system is conserved.  This is true independent of the nature of 
the forces between the particles in the system, be they electromagnetic, nuclear, conservative or 
non-conservative (i.e. forces that convert mechanical energy in to ‘heat’). 

 As an example of momentum conservation of a many-particle system with non-
conservative forces between the particles, we considered a rocket in free space, subject to zero 
net external force.  It can begin to move by ejecting mass at a speed 𝑣𝑒𝑥 relative to the rocket.  
By conservation of momentum, the rocket gains an equal and opposite moment to that given to 
the ejected fuel.  While describing the momentum of the rocket + exhaust from an inertial 
reference frame we found that 𝑚𝑣̇ = −𝑣𝑒𝑥𝑚̇, where 𝑣 is the speed of the rocket, 𝑚 is its mass, 
and 𝑚̇ is the rate at which it is ejecting mass.  The thrust force on the rocket is −𝑣𝑒𝑥𝑚̇.  We also 
found an expression for the net change in velocity of the rocket as 𝑣 − 𝑣0 = 𝑣𝑒𝑥 ln𝑚0

𝑚
, where 𝑚0 

is the initial mass and 𝑚 is the final mass.  In order to maximize the rocket velocity one should 
maximize the exhaust speed 𝑣𝑒𝑥 and the ratio 𝑚0

𝑚
.  The exhaust speed typically depends on the 

violent exothermic chemical reaction that takes place in the rocket motor, making space flight 
fairly dangerous. 

 

 


